
Journal of Applied Mechanics and Technical Physics, Vol. 42, No. 3, pp. 460–468, 2001

ANALYTICAL CALCULATION OF THE

PARAMETERS OF A MOLECULAR GAS

ON A SURFACE IN THE SMOLUCHOWSKI PROBLEM

UDC 533.72A. V. Latyshev and A. A. Yushkanov

An analytical solution of the classical Smoluchowski problem on the temperature jump in molecular
(monatomic, diatomic, and polyatomic) gases is presented. The gas occupies a half-space above a
flat wall, with a constant temperature gradient and evaporation rate from the “gas–condensed phase”
interface set far from this wall. The distribution function is explicitly constructed both in the half-
space and at its boundary. Formulas for the concentration and temperature at the interface are
derived; in the case of diatomic and polyatomic gases, formulas for temperatures determined by
translational and rotational degrees of freedom of molecules are obtained. Numerical calculations are
performed.

Introduction. The classical Smoluchowski problem of the jumps of temperature and concentration of a
rarefied gas above a flat surface, with a temperature gradient perpendicular to the surface, which is set far from
the latter, has been studied for a long time (see, for instance [1, 2] and the bibliography in [3]). This problem
is closely associated with the problem of weak evaporation (condensation): determination of the temperature and
concentration jumps, with a constant rate of evaporation (condensation) of a saturated vapor to a half-space being
set.

The Bhatnagar–Gross–Krook (BGK) equation is widely used now to study heat transfer and evaporation.
Thus, the problem of evaporation of a simple (monatomic) gas into vacuum from cylindrical and spherical surfaces
within a wide range of Knudsen numbers was numerically solved in [4, 5] on the basis of this equation.

The Smoluchowski problem for a monatomic gas was analytically solved with the use of the BGK equation
in [3, 6, 7]. Kinetic models for diatomic and polyatomic gases were proposed in [8] and [9], respectively. Exact
expressions for the temperature and concentration jumps for diatomic and polyatomic gases were also obtained
in [9], and numerical calculations were performed. The question of determination of translational and rotational
temperatures remains open. It should be noted that these temperatures coincide far from the surface.

We assume that the relative temperature difference within the mean free path is much smaller than unity:
lK � 1 (l is the mean free path of molecules and K is the logarithmic temperature gradient), and the evaporation
(condensation) rate U is much smaller than the velocity of sound. If these conditions are satisfied, the kinetic
equation may be linearized.

In the present work, the distribution function for monatomic, diatomic, and polyatomic gases is constructed
in an explicit form. Generic formulas for temperature and concentration jumps are given for monatomic, diatomic,
and polyatomic gases. Exact formulas for the relative concentration and temperature determined by translational
and rotational degrees of freedom are derived analytically. Numerical calculations are performed using the exact
formulas.

It should be noted that the temperature and concentration jumps were found in [10] by the variational
method for the case of the Lennard-Jones and n(r)–6 potentials. In [11], these quantities and the parameters of the
monatomic gas near the surface were calculated numerically on the basis of the Boltzmann equation for molecules
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treated as solid spheres. The gas behavior between two parallel planes, where evaporation or condensation occurs,
was studied in [12]. The major attention was paid to the transitional regime in terms of the Knudsen number.

We consider a monatomic, diatomic, or polyatomic gas, which occupies a half-space x > 0 above a flat surface
of the condensed phase. Evaporation and condensation processes may occur on the surface. There is a temperature
gradient far from the surface, which is perpendicular to the latter. We introduce a Cartesian coordinate system
with the origin on the surface; the region filled by the gas corresponds to the positive values of x. Then, we have
T = T1 + Ax (x→∞), where A = (dT/dx)x=∞. We denote the surface temperature as Ts, then, the temperature
jump is ∆T = T1 − Ts. In the linear approximation, the temperature jump is proportional to the temperature
gradient: ∆T = CtlA, where Ct is an unknown coefficient of proportionality, which is called the temperature-jump
coefficient. Far from the surface, the gas (vapor) motion toward the surface or away from it is also possible, which
corresponds to condensation or evaporation. In this case, the gas concentration and temperature can be found in
the linear approximation from the following relations:

εn =
n− ns

ns
= N1U, εt =

T − Ts

Ts
= N2U.

Here ns is the concentration of the saturated vapor at a temperature Ts.
We call both problems (on temperature and concentration jumps) in the presence of both the temperature

gradient far from the wall and a constant mass flow the Smoluchowski problem, since they differ insignificantly only
in boundary conditions.

1. Distribution Function in the Half-Space and at Its Boundary. For a monatomic gas, the
Smoluchowski problem is to find a solution of the BGK equation

Cx
∂ϕ

∂x
+ ϕ(x,C) =

∫
k(C;C ′)ϕ(x,C ′) dm (1.1)

that satisfies the boundary conditions

ϕx=0 = 0, Cx > 0; ϕx→∞ = ϕas +O(1), Cx < 0. (1.2)

Here dm = π−3/2 exp (−C2)d3C, k(C,C ′) = 1 + 2CxC ′x + (2/3)(C2 − 3/2)(C ′2 − 3/2), ϕas = εn + 2UCx + εt(C2 −
3/2) +K(x− Cx)(C2 − 5/2), εt is the temperature jump, and εn is the concentration jump.

For diatomic and N -atomic gases (N > 2), the Smoluchowski problem consists in solving the equation [6]

Cx
∂ϕ

∂x
+ ϕ(x,C, ν) =

∫
k(C, ν;C ′, ν′)ϕ(x,C ′, ν′) dm

with the kernel

k(C, ν;C ′, ν′) = 1 + 2CxC ′x +
1

l + 1/2
(C2 + ν2 − l − 1/2)(C ′2 + ν′2 − l − 1/2)

(l = 2 for a diatomic gas and l = 5/2 for a polyatomic gas) and the boundary conditions (1.2), in which we have

ϕas = εn + 2UCx + εt(C2 + ν2 − l − 1/2) +K(x− Cx)(C2 + ν2 − l − 3/2)

with

dm = 2π−3/2 exp (−C2 − ν2)ν dν d3C

for the diatomic gas and

dm = π−3 exp (−C2 − ν2) d3ν d3C

for the polyatomic gas. Here ν is the dimensionless angular velocity of revolution of the molecule (0 < ν <∞).
The solution of problem (1.1), (1.2) is sought in the form

ϕ(x,C, ν) = h1(x, µ) + (C2 − 3/2)h2(x, µ) (µ = Cx)

in the case of a monatomic gas or

ϕ(x,C, ν) = h1(x, µ) + (C2 + ν2 − l − 1/2)h2(x, µ)

in the case of an N -atomic gas (N > 2).
For all gases (monatomic, diatomic, and polyatomic), the Smoluchowski problem reduces to solving the

vector equation
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µ
∂h

∂x
+ h(x, µ) =

1√
π

∞∫
−∞

exp(−µ′2)K0(µ, µ′)h(x, µ′) dµ′ (1.3)

(relative to the vector-column with elements h1 and h2) with the boundary conditions

h(0, µ) = 0, 0 < µ <∞, 0 =

[
0

0

]
, (1.4)

h(x, µ) = has(x, µ) +O(1), x→∞, µ < 0. (1.5)

Here

has(x, µ) =

[
εn + 2Uµ−K(x− µ)

εt +K(x− µ)

]
, K0(µ, µ′) =

[
E + 2µµ′

[
1 0

0 0

]]
K(µ′),

E is the unit matrix, and

K(µ) =

[
1 µ2 − 1/2

2/(2l + 1)(µ2 − 1/2) 2/(2l + 1)[(µ2 − 1/2)2 + l]

]
,

where l = 1 for a monatomic gas, l = 2 for a diatomic gas, and l = 5/2 for an N -atomic gas (N > 3).
2. Analytical Solution of the Smoluchowski Problem. According to the general Fourier method,

separation of variables in Eq. (1.3) yields the expression

hη(x, µ) = exp (−x/η)Φ(η, µ), (2.1)

where η is the spectral parameter or the separation parameter, which is complex in the general case. Substitution
of (2.1) into Eq. (1.3) yields the characteristic equation

(η − µ)Φ(η, µ) = η
1√
π

∞∫
−∞

exp (−µ′2)K0(µ, µ′)Φ(η, µ′) dµ′. (2.2)

We assume that Φ(η, µ) satisfies the condition

1√
π

∞∫
−∞

exp (−µ′2)K0(µ, µ′)Φ(η, µ′) dµ′ = E. (2.3)

From Eqs. (2.2) and (2.3) for η ∈ (−∞,∞) in the half-space of generalized functions [13], we find the matrix
eigenfunction

Φ(η, µ) =
1√
π
ηP

1
η − µ

E + exp (η2)B(η)δ(η − µ), (2.4)

where Px−1 is the distribution (main value of the integral in integration of x−1), δ(x) is the Dirac delta function,
and B(z) = K−1(z)Λ(z). Here Λ(z) is the dispersion matrix function of the problem

Λ(z) = E + z
1√
π

∞∫
−∞

exp (−µ2)K(µ)
dµ

µ− z
,

B(z) = λc(z)E +
1
2l
Q(z), Q(z) =

[
1/2− z2 1/2 + l − z2

1 1

]
,

and λc(z) is the Cercignani dispersion function

λc(z) = 1− 2z exp (−z2)

z∫
0

exp (u2) du± i
√
πz exp (−z2), ±Im z > 0.

It is shown in [8, 9] that problem (1.3)–(1.5) has a unique solution, which may be represented in the form of
an expansion in eigenmatrices of the characteristic equation
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TABLE 1

Gas
Smoluchowski problem Problem of weak evaporation

δt δn γt γn

Monatomic 1.30272 −0.744 28 −0.22337 −0.84264

Diatomic 1.21589 −0.674 05 −0.15481 −0.89447

Polyatomic 1.19044 −0.657 06 −0.13335 −0.91042

h(x, µ) = has(x, µ) +

∞∫
0

exp
(
− x

η

)
Φ(η, µ)A(η) dη, (2.5)

i.e.,

h(x, µ) = has(x, µ) +
1√
π

∞∫
0

exp
(
− x

η

)
Φ(η, µ)A(η) dη + exp

(
µ2 − x

µ

)
B(µ)A(µ)θ+(µ). (2.6)

Here A(µ) is an unknown vector-function with elements a1(µ) and a2(µ), θ+(µ) is the Heaviside function [θ+(µ) = 1
for µ > 0 and θ+(µ) = 0 for µ < 0].

In proving expansion (2.5), the values of the temperature and concentration jumps are found:

εt = δtK + γt(2U), εn = δnK + γn(2U). (2.7)

Here δt = −p1/p0 + µ0(1 + δ1D), γt = 2µ0p
2
0D, δn = −δt + µ0q

2
0δ1(2 + δ1D), γn = q1/q0 − γt + µ0(1 + δ1D), D =

4(3µ2
0/2−r(0)r(µ0)−r2(0))/[r(µ)(r(µ0)+µ2

0 +r(0))2], r(x) =
√
q(x), q(x) = (x2−3/2)2 +4l, and δ1 = r(0)/2+3/4;

the point µ0 is found from the equation B1 +R1(µ0) = 0 (special case of the problem of the Jacobi conversion for
elliptical integrals);

Bn = − 1
2π

∞∫
0

b(τ)
r(τ)

τn−1 dτ ; Rn(µ0) = −
µ0∫
0

τn−1

r(τ)
dτ ;

b(τ) = θ1(τ)− θ2(τ); p1/p0 = −A1 −B3 −R3(µ0);

q1/q0 = −A1 +B3 +R3(µ0); An = − 1
2π

∞∫
0

a(τ)τn−1, n = 1, 2, 3, . . . ;

a(τ) = θ1(τ) + θ2(τ)− 2π; θj(τ) = arg Ω+
j (τ); θj(0) = 0;

Ωj(z) = λc(z) + (3/2− z2)/(4l) + (−1)j−1r(z)/(4l), j = 1, 2.

Relations (2.7) are the solution of the Smoluchowski problem. We present the results of numerical calculations
based on these formulas, which are given in the dimensionless form (see Table 1).

It follows from the results listed in Table 1 that the temperature jump Ct for the Prandtl number Pr = 2/3
has the following values: 2.20494 for a monatomic gas, 2.05798 for a diatomic gas, and 2.01490 for a polyatomic
gas. The mean free path l was determined in accordance with [2].

In [8, 9], the unknown vector function A(µ) was also found:

2
√
πiµA(µ) = [X+(µ)−X−(µ)]Ψ(µ). (2.8)

Here X(z) is a matrix that factorizes the coefficient of the uniform Riemann–Hilbert boundary-value problem. The
proof of expansion (2.5) or (2.6) reduces to solving the latter problem. The matrix X(z) contains the following
elements:

X11(z) =
1
2

[
U1(z)

(
1− z2 + 1/2

r(z)

)
+ U2(z)

(
1 +

z2 + 1/2
r(z)

)]
,

X12(z) = −z
2 − l − 1/2
r(z)

[U1(z)− U2(z)], X21(z) =
1
r(z)

[U1(z)− U2(z)],
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X22(z) =
1
2

[
U1(z)

(
1 +

z2 + 1/2
r(z)

)
+ U2(z)

(
1− z2 + 1/2

r(z)

)]
.

The vector column Ψ(µ) has the elements

Ψ1(z) = α1z + α0 +
α−1

z − µ0
, Ψ2(z) = β1z + β0 +

β−1

z − µ0
.

The expression for Xij(z) contains the functions

Uj(z) = exp [−A(z) + (−1)jr(z)(B(z) +R(µ0, z))] (j = 1, 2),

where

A(z) =
1

2π

∞∫
0

a(τ)
τ − z

dτ, R(µ0, z) =

µ0∫
0

dτ

r(τ)(τ − z)
, B(z) =

1
2π

∞∫
0

b(τ)
r(τ)

dτ

τ − z
.

From relation (2.4), we can obtain
∞∫
−∞

exp (−µ2)Φ(η, µ) dµ = E +
1
2l
Q(η).

Hence, in accordance with (2.5), we have

1√
π

∞∫
−∞

exp (−µ2)h(x, µ) dµ =

[
εn −Kx
εt +Kx

]
+

1√
π

∞∫
0

exp
(
− x

η

)[
E +

1
2l
Q(η)

]
A(η) dη. (2.9)

3. Concentration and Temperature in a Monatomic Gas. The concentration and temperature in a
monatomic gas are determined by the relations

n(x) =
∫
f d3v, T (x) =

2
3kn(x)

∫
f
m

2
(v − u)2 d3v

or, with the use of the function ϕ,

n(x)
n0

= 1 + π−3/2

∫
exp (−C2)ϕ(x,C) d3C,

T (x)
T0

= 1 +
2
3
π−3/2

∫
exp (−C2)

(
C2 − 3

2

)
ϕ(x,C) d3C.

We express two latter relations via h1 and h2:

n(x)
n0

= 1 +
1√
π

∞∫
−∞

exp (−µ2)
[
h1(x, µ) +

(
µ2 − 1

2

)
h2(x, µ)

]
dµ; (3.1)

T (x)
T0

= 1 +
2
3

1√
π

∞∫
−∞

exp (−µ2)
{(
µ2 − 1

2

)
h1(x, µ) +

[(
µ2 − 1

2

)2

+ 1
]
h2(x, µ)

}
dµ. (3.2)

We introduce the vector column L(x) =

[
n(x)/n0

T (x)/T0

]
and write equalities (3.1) and (3.2) in the vector form:

L(x) = 1 +
1√
π

∞∫
−∞

exp (−µ2)K(µ)h(x, µ) dµ. (3.3)

Substitution of expansion (2.5) or (2.6) into (3.3) yields the following concentration and temperature distributions
in the half-space:

L(x) = 1 +

[
εn −Kx
εt +Kx

]
+

1√
π

∞∫
0

exp
(
− x

η

)
A(η) dη.
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Using analytical methods, we can find the exact values of the concentration and temperature at the boundary
of the half-space, i.e., for x = 0. Using (2.8), we obtain

L(0) = 1 +

[
εn

εt

]
+

1
2πi

∞∫
0

[X+(η)−X−(η)]Ψ(η)
dη

η
.

Avoiding derivation (see [14]), we write the integral representation

X(z)Ψ(z) = has(0, z) +
1

2πi

∞∫
0

[X+(η)−X−(η)]Ψ(η)
dη

η − z
.

Using this representation, we obtain L(0) =

[
1

1

]
+ lim
z→0

X(z)Ψ(z).

It should be noted that the expression z2U2(z) has a finite limit in the zero, since the function U2(z) has the
second-order pole in the zero. We denote lim

z→0
z2U2(z) = γ. The dispersion function is represented in the form

λ(z) =
2l

2l + 1
Ω1(z)Ω2(z).

At the same time, we can prove (see, for example, [15]) that

λ(z) =
2l + 3

4(2l + 1)U1(z)U1(−z)[U2(z)z2][U2(−z)(−z)2]
,

whence we obtain

γ =
1

2U1(0)

√
2l + 3
2l + 1

, l = 1, 2, 5/2.

The sign of the radical is chosen from the condition of continuity of the function U1(z). We denote

X(z)Ψ(z) = F (z) =

[
f1(z)

f2(z)

]
.

We calculate the limit

lim
z→0

X(z)Ψ(z) =

[
f1

f2

]
≡ F.

It is shown that ϕ(0) = 0 [9], where ϕ(z) = −Ψ1(z) + δ(z)Ψ2(z) and δ(z) = [r(z)− z2 − 1/2]/2. Hence, we
obtain Ψ1(0) = δΨ2(0), where δ = δ(0) = r(0)/2− 1/4. As a result, we find

F = Ψ2(0) lim
z→0

X(z)

[
δ

1

]
= Ψ2(0) lim

z→0

[
δX11(z) +X12(z)

δX21(z) +X22(z)

]
.

Using the expressions for the elements of the matrix X(z), we find the sought limits:

f1 = Ψ2(0)
[
δU1(0) + γ

2(δ + 1)(2δ + 1)
(4δ + 1)2

]
, f2 = Ψ2(0)

[
U1(0)− γ 4(δ + 1)

(4δ + 1)2

]
.

Thus, we finally obtain the concentration and temperature on the wall:
n(0)
n0

= 1 + δU1(0)Ψ2(0) + γΨ2(0)
2(δ + 1)
(4δ + 1)2

; (3.4)

T (0)
T0

= 1 + U1(0)Ψ2(0)− γΨ2(0)
4(δ + 1)
(4δ + 1)2

. (3.5)

According to [14], here we have

Ψ2(0) = β0 −
β−1

µ0
= µ0q0(1 + δ1D1)K + µ0p0D1(2U),

D1 = D − 1
α− δ

= 2
µ2

0 − r(0)
r(µ0)[r(µ0) + µ2

0 + r(0)]
.
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4. Concentration and Temperature of Translational and Rotational Degrees of Freedom in an
N-atomic Gas (N > 2). The macrocharacteristics of an N -atomic gas (N > 3) are determined by the relations
[9, 14]

n =
∫
f d3ω d3v, Tv =

2
3kn

∫
f
m

2
(v − u)2 d3ω d3v,

u =
1
n

∫
fv d3ω d3v, Tω =

2
3kn

∫
f

1
2

3∑
i=1

Jiω
2
i d

3ω d3v.

Here ω = (ω1, ω2, ω3) is the vector of the dimensional angular velocity of revolution of the molecules and J1, J2,
and J3 are the moments of inertia of the molecule.

In the case of a diatomic gas, the molecule has one moment of inertia J , and the macrocharacteristics of the
diatomic gas are determined by the following expressions [8, 9]:

n =
∫
fω dω d3v, Tv =

2
3kn

∫
f
m

2
(v − u)ω dω d3v,

u =
1
n

∫
fvω dω d3v, Tω =

2
3kn

∫
f

1
2
Jω2ω dω d3v.

Hereinafter, we consider the cases of diatomic and N -atomic (N > 3) gases together. It should be noted that the
concentration distribution in the half-space (3.1) in the cases considered yields the same relation for the concentration
on the wall [see (3.4)].

The temperature distributions of translational and rotational degrees of freedom with the use of h1 and h2

may be represented as

Tv(x)
T0

= 1 +
2
3

1√
π

∞∫
−∞

exp (−µ2)
{(
µ2 − 1

2

)
h1(x, µ) +

[(
µ2 − 1

2

)2

+ 1
]
h2(x, µ)

}
dµ;

Tω(x)
T0

= 1 +
1√
π

∞∫
−∞

exp (−µ2)h2(x, µ) dµ. (4.1)

According to (3.3), we have

1√
π

∞∫
−∞

exp (−µ2)K(µ)h(0, µ) dµ =

[
εn

εt

]
+

1√
π

∞∫
0

A(η) dη =

[
f1

f2

]
.

From this equality, using the expression for εt, we find the translational temperature

Tv(0)
T0

= 1 +
2l + 1

3
f2 − (l − 1)

2
3

1√
π

∞∫
−∞

exp (−µ2)h2(0, µ) dµ. (4.2)

We have to find the rotational temperature on the wall, i.e., the value of expression (4.1) for x = 0. On the
basis of (2.9), for x = 0, we obtain

1√
π

∞∫
−∞

exp (−µ2)h(0, µ) dµ =

[
εn

εt

]
+

1√
π

∞∫
0

R(η)A(η) dη, (4.3)

where R(η) = E +Q(η)/(2l) = R0 +R2η
2,

R0 =

[
1 + 1/(4l) (l + 1/2)/(2l)

1/(2l) 1 + 1/(2l)

]
, R2 = − 1

2l

[
1 1

0 0

]
.

Expanding the matrix X(z) and the vector Ψ(z) for |z| → ∞ into asymptotic series X(z) = X0 +X1/z+ . . .

and Ψ(z) = zΨ1 + Ψ0 + Ψ−1/z + . . . and using the method of contour integration, we obtain the following integral
representation:
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R(z)[X(z)Ψ(z)− has(z)]−R2(X0Ψ−2 +X1Ψ−1 +X2Ψ0)

− zR2(X0Ψ−1 +X1Ψ0 +X2Ψ1) =
1√
π

∞∫
0

R(η)
ηA(η)
η − z

dη.

Hence, for z = 0, we have

1√
π

∞∫
0

R(η)A(η) dη = R0

[
f1 − εn
f2 − εt

]
−R2(X0Ψ−2 +X1Ψ−1 +X2Ψ0). (4.4)

Substituting (4.4) into (4.3) and using the expression for f2 − εt from (4.4), we obtain

1√
π

∞∫
−∞

exp(−µ2)h2(0, µ) dµ = − 1
2l

(εn + εt) +
1
2l
f1 +

2l + 1
2l

f2. (4.5)

To find the translational and rotational temperatures, we substitute (4.5) into (4.2) and (4.1) for x = 0:

Tv(0)
T0

= 1 +
l − 1

3l
(εn + εt)−

l − 1
3l

f1 +
2l + 1

3l
f2; (4.6)

Tω(0)
T0

= 1− 1
2l

(εn + εt) +
1
2l
f1 +

2l + 1
2l

f2. (4.7)

Remark 1. For l = 1, formula (4.6) has no second and third terms and coincides with formula (3.5) for a
monatomic gas.

We present some results of numerical calculations. For a monatomic gas, from formulas (3.5) and (3.4), we
have T (0)/T0 = 1 + 0.85351K − 0.40958U and n(0)/n0 = 1− 0.39657K − 1.32226U .

For a diatomic gas, formulas (4.6), (4.7), and (3.4) yield the following results: Tv(0)/T0 = 1 + 0.82149K −
0.33938U , Tω(0)/T0 = 1 + 0.77028K − 0.13676U , and n(0)/n0 = 1− 0.38207K − 1.35394U .

Finally, for an N -atomic gas (N > 3), from formulas (4.6), (4.7), and (3.4), we obtain Tv(0)/T0 = 1 +
0.81174K − 0.31975U , Tω(0)/T0 = 1 + 0.76172K − 0.11719U , and n(0)/n0 = 1− 0.37840K − 1.36265U .

Conclusions. The parameters of a monatomic gas near the surface were calculated in several papers (see
[11, 12]). Aoki and Mazukawa [12] determined the gas parameters between two planes in the case of evaporation
or condensation. However, the results of [12] are presented in such a form that does not allow a direct comparison
with the results of the present work. We cite the results of Loyalka [11], which were obtained for a monatomic gas
on the basis of the numerical solution of the Boltzmann equation for molecules treated as solid spheres (recalculated
in the notation of the present work): T (0)/T0 = 1 + 0.8650K − 0.4036U , n(0)/n0 = 1 − 0.4141K − 1.3074U ,
εt = 1.2487K − 0.4556U , and εn = −0.6789K − 1.6856U . A comparison of the results of [11] with the data of the
present work shows that the difference is 4% for the temperature jump and 8% for the concentration jump in the
Smoluchowski problem; the difference is 2% for the temperature jump and 0.02% for the concentration jump in the
problem of weak evaporation. It should be noted that the temperature jump for a monatomic gas εt = 1.3027 was
found by numerical methods in [16], which coincides with the above value.

The formulas for the temperature jump of a molecular gas, which were obtained in the present work, may
be used for analysis of the dynamics of moderately large aerosol particles, for analysis of measurements of the
thermal conductivity of molecular gases, and in other problems of heat transfer between the molecular gas and the
condensed phase.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 99-01-00336).
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